Caffemodel反推prototxt网络结构 发表于 2017-07-02 | 分类于 深度学习 当只有caffemodel反推prototxt网络结构 1234567891011121314151617181920212223#coding=utf-8 from caffe.proto import caffe_pb2 def toPrototxt(modelName, deployName): with open(modelName, 'rb') as f: caffemodel = caffe_pb2.NetParameter() caffemodel.ParseFromString(f.read()) # 兼容新旧版本 # LayerParameter 消息中的 blobs 保存着可训练的参数 for item in caffemodel.layers: item.ClearField('blobs') for item in caffemodel.layer: item.ClearField('blobs') # print(caffemodel) with open(deployName, 'w') as f: f.write(str(caffemodel)) if __name__ == '__main__': modelName = 'facenet_iter_14000.caffemodel' deployName = 'facenet_deploy.prototxt' toPrototxt(modelName, deployName)